منابع مشابه
On certain Rankin - Selberg integrals on GE 6 ∗
In this paper we begin the study of two Rankin-Selberg integrals defined on the exceptional group of type GE6. We show that each factorizes and that the contribution from the unramified places is, in one case, the degree 54 Euler product LS(π× τ, E6× GL2, s) and in the other case the degree 30 Euler product L S(π × τ,∧2 ×GL2, s).
متن کاملArchimedean Rankin-Selberg Integrals
The paper gives complete proofs of the properties of the RankinSelberg integrals for the group GL(n,R) and GL(n,C).
متن کاملA New Tower of Rankin-Selberg Integrals
The notion of a tower of Rankin-Selberg integrals was introduced in [G-R]. To recall this notion, let G be a reductive group defined over a global field F . Let G denote the L group of G. Let ρ denote a finite dimensional irreducible representation of G. Given an irreducible generic cuspidal representation of G(A), we let L(π, ρ, s) denote the partial L function associated with π and ρ. Here s ...
متن کاملNonvanishing of certain Rankin-Selberg L-functions
In this article we prove that given a holomorphic cusp form f and any point s0 in the complex plane, there is a holomorphic cusp form g such that the Rankin-Selberg L-function L(s, f × g) is non-zero at s0. Résumé: Dans cet article, on prouve le résultat suivant. Etat donné une forme holomorphe cuspidale f et un point quelquonque du plan complexe, il existe une forme holomorphe cuspidale g tell...
متن کاملON SELBERG-TYPE SQUARE MATRICES INTEGRALS
In this paper we consider Selberg-type square matrices integrals with focus on Kummer-beta types I & II integrals. For generality of the results for real normed division algebras, the generalized matrix variate Kummer-beta types I & II are defined under the abstract algebra. Then Selberg-type integrals are calculated under orthogonal transformations.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nagoya Mathematical Journal
سال: 2008
ISSN: 0027-7630,2152-6842
DOI: 10.1017/s0027763000025903